Menyelesaikanpersamaan a sin x + b cos x = c; Menyelesaikan persamaan Trigonometri yang berbentuk Persamaan Kuadrat; Menyelesaikan persamaan Trigonometri dengan tabel dan kalkulator; B. Contoh Soal dan Pembahasan. Contoh 1 Tentukan himpunan penyelesaian dari persamaan sin x =1/2 pada interval 0 0 ≀ x ≀ 360 0. Pembahasan sin x =1/2 sin x

Pada kesempatan kali ini saya akan berbagi bagaimana cara menyelesaikan persamaan trigonometri tanpa menggunakan rumus. yang saya maksud, adalah rumus persamaan trigonometri berikut ini Persamaan Penyelesaian $\sin{x} =\sin{a^\circ}$ $\cos{x}=\cos{a^\circ}$ $\tan{x}=\tan{a^\circ}$ $x=a^\circ+k\times360^\circ$ atau $x=180-a^\circ+k\times360^\circ$ $x=\pm a^\circ+k\times 360^\circ$ $x=a^\circ +k\times 180^\circ$ Rumus-rumus yang lumayan susah untuk diingat 😁, tapi cara yang saya bagikan ini sebenarnya tidak saya sarankan, anggap saja hanya berbagi pengalaman bagaimana cara saya menutupi kekurangan yang jujur saja lemah dalam hapalan, toh matematika bukan ilmu hapalan kan? hehe 😁 Namun tetap, ada beberapa syarat yang mesti terpenuhi untuk bisa menggunakan cara ini, Pertama, kalian harus tau nilai trigonometri sudut istimewa pada kuadran I, sebagai berikut $\alpha$ $0^\circ$ $30^\circ$ $45^\circ$ $60^\circ$ $90^\circ$ $\sin{\alpha}$ $0$ $\frac{1}{2}$ $\frac{1}{2}\sqrt{2}$ $\frac{1}{2}\sqrt{3}$ $1$ $\cos{\alpha}$ $1$ $\frac{1}{2} \sqrt{3}$ $\frac{1}{2} \sqrt{2}$ $\frac{1}{2}$ $0$ $\tan{\alpha}$ $0$ $\frac{1}{3} \sqrt{3}$ $1$ $\sqrt{3}$ $-$ Kedua, kalian harus tau nilai trigonometri bernilai positif atau negatif berada di kuadran mana saja. untuk mempermudah mengingatnya, kita ingat yang bernilai positifnya saja yang biasa saya hapal menggunakan "jembatan keledai" dalam kalimat "semanis sinta tanpa cosmetik", sebagai berikut Kuadran I Semua bernilai positif $\sin$, $\cos$, $\tan$, $\sec$, $\csc$ dan $\cot$ Kuadaran II $\sin$ dan "kebalikannya" yaitu $\csc$ bernilai positif, yang lainnya negatif Kuadran III $\tan$ dan "kebalikannya" yaitu $\cot$ bernilai positif, yang lainnya negatif Kuadran IV $\cos$ dan "kebalikannya" yaitu $\sec$ bernilai positif, yang lainnya negatif perhatikan diagram berikut Nah, itulah dua syarat yang harus terpenuhi. Baiklah sekarang kita coba bahas soal persamaan trigonometri, kita mulai dari yang paling sederhana CONTOH 1 Tentukan penyelesaian dari persamaan $\sin{x}=\frac{1}{2}$ untuk $0^\circ \leq x \leq 360^\circ$. Jawab Pertama perhatikan batasan $x$ yaitu $0^\circ \leq x \leq 360^\circ$ artinya $x$ bisa berada di kuadran I, II, III atau IV. Sekarang perhatikan persamaan $\sin{x}=\frac{1}{2}$, bisa kita lihat nilai $\sin$ positif, artinya nilai $x$ yang memenuhi pastilah berada di kuadran I atau II karena $\sin$ positif di kuadran I dan II maka nilai $x$ yang memenuhi pastilah $x=30^\circ$ atau $x=150^\circ$ CONTOH 2 Tentukan penyelesaian dari persamaan $\cos{x}+1=0$ untuk $0^\circ \leq x \leq 360^\circ$. Jawab $\cos{x}+\frac{1}{2}\sqrt{2}=0\Rightarrow\cos{x}=-\frac{1}{2}\sqrt{2}$ Pertama perhatikan batasan $x$ yaitu $0^\circ \leq x \leq 360^\circ$ artinya $x$ bisa berada di kuadran I, II, III atau IV. Perhatikan persamaan $\cos{x}=-\frac{1}{2}\sqrt{2}$ nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada di kuadran III dan IV. Maka nilai $x$ yang memenuhi adalah $x=180^\circ-45^\circ=135^\circ$ atau $x=180^\circ+45^\circ=225^\circ$ CONTOH 3 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Penyelesaian persamaan $\cos{x}=-\frac{1}{2}\sqrt{3}$ untuk $0^\circ\leq x \leq 360^\circ$ adalah .... A. $x=30^\circ, 150^\circ$ B. $x=120^\circ, 210^\circ$ C. $x=150^\circ, 210^\circ$ D. $x=150^\circ, 300^\circ$ E. $x=150^\circ, 330^\circ$ Jawab Nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada di kuadaran II dan III, maka nilai $x$ yang memenuhi adalah $x=180^\circ-30^\circ=150^\circ$ dan $x=180^\circ+30^\circ=210^\circ$.Jawaban C CONTOH 4 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Diketahui $x_1$ dan $x_2$ merupakan penyelesaian persamaan $\sqrt{2}+2\cos{x}=0$ untuk $0^\circ\leq x \leq 360^\circ$. nilai $x_1+x_2=$ .... A. $210^\circ$ B. $270^\circ$ C. $300^\circ$ D. $330^\circ$ E. $360^\circ$ Jawab $\begin{align*}\sqrt{2}+2\cos{x}&=0\\2\cos{x}&=-\sqrt{2}\\ \cos{x}&=-\frac{1}{2}\sqrt{2}\end{align*}$ Nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada pada kuadran II dan III, maka $x_1=180^\circ-45^\circ=135^\circ$ $x_2=180^\circ+45^\circ=225^\circ$, sehingga $x_1+x_2=135^\circ+225^\circ=360^\circ$Jawaban E CONTOH 5 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Penyelesaian persamaan $\tan{x+15^\circ}=-1$ untuk $180^\circ \leq x \leq 360^\circ$ adalah .... A. $x=135^\circ$ B. $x=225^\circ$ C. $x=300^\circ$ D. $x=315^\circ$ E. $x=330^\circ$ Jawab Batasan $x$, $180^\circ \leq x \leq 360^\circ$ bisa kita ubah menjadi $180^\circ+15^\circ \leq x+15^\circ \leq 360^\circ+15^\circ$ $\Rightarrow 195^\circ\leq x+15^\circ\leq 375^\circ$ Jika kita misalkan $x+15^\circ=p$, maka $\tan{p}=-1$ dengan $195^\circ\leq p \leq 375^\circ$ $\tan$ bernilai negatif, artinya $p$ yang memenuhi berada di kuadran IV, dengan demikian, nilai $p=360^\circ-45^\circ=315^\circ$ $\begin{align*}x+15^\circ&=p\\x+15^\circ&=315^\circ\\x&=315^\circ-15^\circ\\x&=300^\circ\end{align*}$Jawaban C CONTOH 6 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Himpunan penyelesaian persamaan $2\cos{2x-60^\circ}=1$ untuk $0^\circ \leq x \leq 180^\circ$ adalah .... A. $\{ 0^\circ, 45^\circ, 135^\circ \}$ B. $\{0^\circ, 60^\circ, 135^\circ\}$ C. $\{0^\circ, 60^\circ, 180^\circ\}$ D. $\{30^\circ, 45^\circ, 180^\circ\}$ E. $\{30^\circ, 135^\circ, 180^\circ\}$ Jawab $\begin{align*}2\cos {2x-60^\circ}&=1\\ \cos{2x-60^\circ}&=\frac{1}{2}\end{align*}$ Batasan $x$ $0^\circ \leq x \leq 180^\circ \Leftrightarrow -60^\circ \leq 2x-60^\circ \leq 360^\circ$ Misal $2x-60^\circ = p$, maka $\cos{p}=\frac{1}{2}$ untuk $-60^\circ \leq p \leq 300^\circ$ karena nilai $\cos$ positif, maka $p$ yang memenuhi berada di kuadran I, dan IV. Perhatikan juga "batasan" $p$, $-60^\circ$ berada di kuadran IV, memenuhi. jadi $p=-60^\circ, 60^\circ, 300^\circ$ $2x-60^\circ=p\Leftrightarrow x=\frac{p+60^\circ}{2}$ untuk $p=-60^\circ\Rightarrow x=\frac{-60^\circ+60^\circ}{2}=0^\circ$ untuk $p=60^\circ\Rightarrow x=\frac{60^\circ+60^\circ}{2}=60^\circ$ untuk $p=300^\circ\Rightarrow x=\frac{300^\circ+60^\circ}{2}=180^\circ$Jawaban C

Menentukanpenyelesaian persamaan trigonometri dasar a. sinπ‘₯=sin𝛼° Nilai sinus suatu sudut positif di kuadran 1 dan 2 sehingga untuk persamaan sinπ‘₯=sin𝛼° penyelesaiannya adalah: π‘₯={ 𝛼°+ .360Β°βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’(𝐾 π‘‘π‘Ÿ 𝑛 1) (180βˆ’π›Ό)Β°+ .360Β°βˆ’βˆ’βˆ’βˆ’βˆ’(𝐾 π‘‘π‘Ÿ 𝑛 2) b.
ο»ΏMath SMAHomeTeacherKelas XKelas XIMatematika Wajib XIMatematika Minat XIKD. 1 Persamaan TrigonometriReview TrigonometriSudut Khusus dan KuadranGrafik TrigonometriIdentitas TrigonometriPersamaan Trigonometri sederhanaPersamaan Trigonometri dengan IdentitasnyaPersamaan Trigonometri Bentuk KuadratKD. 2 Jumlah dan perkalian TrigonometriKD3. LingkaranKD4. PolinomialKelas XIIGaleriMath SMAHomeTeacherKelas XKelas XIKelas XIIGaleriMore11 PERSAMAAN TRIGONOMETRI Bentuk Kuadrat dan updated Report abuse
Persamaantrigonometri sederhana terdiri dari persamaan untuk sinus, cosinus, dan tangen. Pembahasan materi persamaan trigonometri sederhana dibatasi pada penyelesaian yang berada pada rentang 0 o sampai dengan 360 o atau 0 sampai dengan 2Ο€. Rumus untuk menyelesaikan persamaan trigonometri sederhana seperti berikut:
Dalampersamaan kuadrat, ada 2 nilai untuk x. Selesaikan setiap persamaan secara terpisah dengan memindahkan variabel dan menuliskan 2 jawaban untuk x, seperti ini: Selesaikan 3x + 1 = 0 3x = -1 .. dengan mengurangi 3x/3 = -1/3 .. dengan membagi x = -1/3 .. dengan menyederhanakan Selesaikan x - 4 = 0 x = 4 .. dengan mengurangi Tambahkansatu angka di ruas kiri dan kanan agar menjadi kuadrat sempurna. Penambahan angka ini diambil dari separuh angka koefisien dari x atau separuhnya 6 yang dikuadratkan, yakni 32=9. Tambahkan angka 9 di ruas kiri dan kanan, sehingga persamaannya menjadi: x2 + 6x + 9 = -5 + 9. x2 + 6x + 9 = 4. (x+3)2 = 4.
Matematikastudycentercom-Contoh soal dan pembahasan menyelesaikan persamaan trigonometri, menentukan himpunan penyelesaian materi matematika dengan batas permintaan 0Β° ≀ x ≀ 360Β°, yang diambil sebagai himpunan penyelesaiannya adalah: HP = {30Β°, 150Β°} Soal No. 2 Untuk 0Β° ≀ x ≀ 360Β° tentukan himpunan penyelesaian dari cos x = 1
Dengandemikian, 1. sin x˚=a, diubah dahulu menjadi sin x˚= sin 2. cos x˚=a, diubah dahulu menjadi cos x˚= cos 3. tan x˚=a, diubah dahulu menjadi tan x˚= tan Setelah itu, persamaan-persamaan tersebut diselesaikan dengan menggunakan cara-cara persamaan trigonometri dasar. 12. wqouEBX.
  • idy2jisl8t.pages.dev/139
  • idy2jisl8t.pages.dev/355
  • idy2jisl8t.pages.dev/161
  • idy2jisl8t.pages.dev/147
  • idy2jisl8t.pages.dev/262
  • idy2jisl8t.pages.dev/347
  • idy2jisl8t.pages.dev/158
  • idy2jisl8t.pages.dev/85
  • idy2jisl8t.pages.dev/3
  • menyelesaikan persamaan trigonometri yang berbentuk persamaan kuadrat